Дисперсионный анализ

Качественные факторы

4. Качественные факторы.

При оценке существенности используются два основных подхода – индуктивный и дедуктивный.

При оценке существенности в ОАО «Уфамолзавод» я выбрала индуктивный подход.

Аудируемое лицо ОАО «Уфамолзавод». Вид деятельности – производство и оптово-розничная торговля молочной продукцией. Форма проверки – инициативный, первоначальный, выборочный аудит. Объект проверки – бухгалтерский учет расчетов по заработной плате. Средняя величина денежных средств, направленных на оплату труда составляет 14 520 руб. (таблица 2.10). Базовые показатели и соответствующие им уровни существенности представлены в таблице 2.14.

Таблица 2.14. Базовые показатели и установление уровня существенности

Базовый показатель

Значение

показателя, т.р.

Уровень существенности, % Значение существенности, т.р.
Прибыль от продаж (форма 2, стр.190) 4 897 5 245
Выручка от продаж (форма 2, стр.010) 416 685 2 8334
Валюта баланса (форма 1, стр.300) 105 547 2 2111
Собственный капитал (форма 1, стр.490) 20 876 10 2088
Себестоимость продаж (форма 2, стр.020) 347 657 2 6953

Значение существенности по отношению к конкретной статье отчетности (в нашем примере это средняя величина заработной платы) рассчитывается по формуле 10:

Sn = (Cn x У (Sn)) / 100% (10)

Sn = 14 520 x 2% / 100% = 290, 4 руб.

Следовательно, при использовании индуктивного подхода значение существенности по отношению к расчетам по зарплате составит: Sn = 290,4 руб. Это значение можно округлить до 300 руб.

Расчет аудиторского риска

Под термином «аудиторский риск» понимается риск выражения аудитором ошибочного мнения в случае, когда в финансовой (бухгалтерской) отчетности содержатся существенные искажения.

Аудитор рискует всегда, поэтому в общем виде (неравенство 2):

0 ≤ АР ≤ 100% (2)

Аудиторский риск включает три составные части: неотъемлемый риск, риск средств контроля и риск необнаружения.

Приступая к осуществлению аудиторских процедур по договору, аудитор всегда рискует не выявить существенных искажений в финансовой отчетности аудируемого лица и оформить неверное аудиторское заключение. Аудитор не может гарантировать полного отсутствия существенных ошибок.

Поэтому в аудиторской практике используется понятие приемлемого аудиторского риска (ПАР), который готов взять на себя аудитории (неравенство 3):

0 ≤ ПАР ≤ 10%. (3)

ПАР определяется тремя компонентами, т.е. разлагается на произведение трех множителей – специальных рисков (формула 11):

ПАР = ВХР х КР х РН, (11)

где ПАР – приемлемый аудиторский риск, ВХР – внутрихозяйственный риск, КР – контрольный риск, РН – риск необнаружения.

Рассмотрим порядок расчета этих трех компонентов.

1) Расчет внутрихозяйственного риска.

Внутрихозяйственный риск – это установленный аудитором уровень риска, отражающий подверженность финансовой отчетности аудируемого лица существенным ошибкам.

Величина внутрихозяйственного риска (ВХР) может быть выражена следующим соотношением (неравенство 4):

0 < ВХР ≤ 100% (4)

Если ВХР = 60-70% ≈ 65%, то, согласно МСА, значение ПАР = 5%.

При самых благоприятных обстоятельствах аудиторы устанавливают уровень этого риска значительно выше 50%, а при наличии обоснованного ожидания ошибок на уровне 100%. Если в бухгалтерском учете присутствует как минимум 1-2 ошибки, то будет использоваться следующее соотношение (формула 12):

ВХРнорм = 65%, →{ПАР = 5% (12)

Расчет ВХР необходимо осуществить по результатам таблицы 2.15.

Таблица 2.15 Тестирование качественных критериев для оценки внутрихозяйственного риска

Фактор Оценка надежности Балл
1. Экономическая ситуация в отрасли, в которой функционирует предприятие Имеет признаки стабилизации 2
2. Уровень конкуренции в отрасли В отрасли существует здоровая конкуренция с определенными и устоявшимися сегментами 5
3. Законодательство и инструкции, регламентирующие основной вид деятельности Законодательство и нормативные акты ясны и понятны для администрации и бухгалтерии 5
4. Использование новых технологий на предприятии Предприятие использует хорошо изученные технологии 5
5. Месторасположение предприятия Предприятие расположено в Уфе 5
6. Разбросанность предприятия Предприятие расположено на одной территории 5
7. Дочерние и зависимые предприятия Предприятие не имеет дочерних и зависимых предприятий 5
8. Учет по подразделениям Предприятие ведет централизованный учет, в подразделениях ведутся первичные учетные регистры 3
9. Реорганизация и крупные продажи имущества На предприятие не проводились реорганизация или крупные продажи имущества за последние 3 года 5
10. Способность контроля собственниками Акционеры – собственники способны осуществлять только стратегический контроль через органы управления 2
11. Общественное мнение Социальная значимость предприятие не определена и не имеет существенной поддержки 2
12.Экология Деятельность предприятие не влияет отрицательно на экологию 4
13. Возможный конфликт интересов Конфликтов интересов собственников и руководство не существует 5
14. Возможность проникновения нелегального бизнеса В отрасли нелегальный бизнес практически отсутствует 5
15. Судебное разбирательство Судебные разбирательства возможны как единичные случаи 2
16. Налоговое бремя Отрасль и деятельность предприятие имеет налоговое бремя, сходное с большинством отраслей страны 2
17. Зависимость от покупателей Реализация продукции, услуг одному покупателю не превышает 5% от общего годового оборота предприятие 5
18. Зависимость от поставщиков Рынок поставщиков большой, среди поставщиков существует здоровая конкуренция 5
19. Подверженность кражи Продукция предприятие легко транспортируемая и имеет хорошо ликвидный характер 0
20. Формы расчетов Расчет наличными минимален, но существуют такие формы расчета, как бартер, трансферт и т.п. 4
21. Капитальные вложения Предприятие осуществляет капитальные вложение, не превышающие амортизационные отчисления и прибыль года находящуюся в распоряжении предприятия 3
22. Незавершенное производство и запасы Оценка и инвентаризация запасав и незавершенного производства достаточно просты 5
23. Кредиты Предприятию необходимы существенные кредиты или инвестиции для развития деятельности 2
24. Оборотный капитал. Ликвидность Предприятие имеет достаточный оборотный капитал, но существуют проблемы ликвидности оборотного капитала в части, превышающей краткосрочные обязательства 2
25. Доходность Предприятие имеет стабильный хорошо прогнозируемый доход 5
26. Ценные бумаги Ценные бумаги ликвидны на фондовом рынке и имеют устойчивую котировку. Предприятие ведет листинг 5
Всего баллов 97

Расчет внутрихозяйственного риска: ВХР = 100% — КБ/5,

100%- (97/5) = 80,6 %

Фактический внутренний риск 80,6

2) Расчет риска контроля.

Риск контроля должен быть обратно пропорционален внутрихозяйственному риску, так как система контроля направлена на поиск ошибок, пропущенных системой учета.

Величина риска контроля может быть выражена отношением (неравенство 5):

Информация о работе «Методика аудита расчетов по заработной плате» Раздел: Бухгалтерский учет и аудит
Количество знаков с пробелами: 85364
Количество таблиц: 16
Количество изображений: 0

Похожие работы

60795 0 0

… документации, разработанные НИПИстатинформом Госкомстата России, а также регистры бухгалтерского учета и отчетность. 1.2. Нормативные документы, используемые при аудите. При аудите расчетов по заработной плате и единому социальному налогу необходимо руководствоваться следующими нормативными документами: 1. Гражданский кодекс Российской Федерации, ч.1 и 2. 2. Налоговый …

60051 2 0

… мастер производит приемку продукции, ее качества и закрывает наряд. Нормировщики проверяют правильность норм и расценок, после этого наряды подписываются начальником цеха. Из отдела труда и заработной платы наряды и рапорты вместе с табелями-расчетами передаются в бухгалтерию в установленные сроки. Аудитор проверяет оформление первичных документов (нарядов, рапортов, маршрутных листов и др.), …

53460 3 0

… тыс. руб., по налогам и сборам – на 185 тыс. руб., на 4361 тыс. руб. перед остальными кредиторами. Результаты проведенного анализа позволяют сделать вывод о нерентабельности предприятия. 2. АУДИТ УЧЕТА ОПЕРАЦИЙ ПО РАСЧЕТАМ ПО ЗАРАБОТНОЙ ПЛАТЕ РАБОЧИХ И СЛУЖАЩИХ 2.1 Нормативные документы, используемые при аудите В соответствии с п. 1 ст. 1 ФЗ от 7 августа 2001 г. № 119-ФЗ «Об аудиторской …

177548 7 1

… прежде всего, обязан провести работу, позволяющую получить достоверную информацию о правомерности принятия первичных документов, используемых на предприятии при начислении заработной платы, к бухгалтерскому учету. В ходе аудита расчетов по оплате труда персонала было установлено, что первичные документы и документы бухгалтерского учета ФАКБ «Славянский Банк» (ЗАО) в г. Рязань отвечают требованиям …

Ответы на тесты по эконометрике

Q=………..min соответствует методу наименьших квадратов

Автокорреляция — это корреляционная зависимость уровней ряда от предыдущих значений.

Автокорреляция имеется когда каждое следующее значение остатков

Аддитивная модель временного ряда имеет вид: Y=T+S+E

Атрибутивная переменная может употребляться, когда: независимая переменная качественна;

В каких пределах изменяется коэффициент детерминанта: от 0 до 1.

В каком случае модель считается адекватной Fрасч>Fтабл

В каком случае рекомендуется применять для моделирования показателей с увелич. ростом параболу если относительная величина…неограниченно

В результате автокорреляции имеем неэффективные оценки параметров

В хорошо подобранной модели остатки должны иметь нормальный закон

В эконометрическом анализе Xj рассматриваются как случайные величины

Величина доверительного интервала позволяет установить предположение о том, что: интервал содержит оценку параметра неизвестного.

Величина рассчитанная по формуле r=…является оценкой парного коэф. Корреляции

Внутренне нелинейная регрессия — это истинно нелинейная регрессия, которая не может быть приведена к линейной регрессии преобразованием переменных и введением новых переменных.

Временной ряд — это последовательность значений признака (результативного переменного), принимаемых в течение последовательных моментов времени или периодов.

Выберете авторегрессионную модель Уt=a+b0x1+Ɣyt-1+ƹt

Выберете модель с лагами Уt= a+b0x1…….(самая длинная формула)

Выборочное значение Rxy не > 1, |R| < 1

Выборочный коэффициент корреляции r по абсолютной величине не превосходит единицы

Гетероскедастичность — нарушение постоянства дисперсии для всех наблюдений.

Гетероскедастичность присутствует когда: дисперсия случайных остатков не постоянна

Гетероскидастичность – это когда дисперсия остатков различна

Гипотеза об отсутствии автокорреляции остатков доказана, если Dтабл2…

Гомоскедастичность — постоянство дисперсии для всех наблюдений, или одинаковость дисперсии каждого отклонения (остатка) для всех значений факторных переменных.

Гомоскидастичность – это когда дисперсия остатков постоянна и одинакова для всех … наблюдений.

Дисперсия — показатель вариации.

Для определения параметров неиденцифицированной модели применяется.: не один из сущ. методов применить нельзя

Для определения параметров сверх иденцифицированной модели примен.: применяется. 2-х шаговый МНК

Для определения параметров структурную форму модели необходимо преобразовать в приведенную форму модели

Для определения параметров точно идентифицируемой модели: применяется косвенный МНК;

Для оценки … изменения y от x вводится: коэффициент эластичности:

Для парной регрессии ơ²b равно ….(xi-x¯)²)

Для проверки значимости отдельных параметров регрессии используется: t-тест.

Для регрессии y=a+bx из n наблюдений интервал доверия (1-а)% для коэф. b составит b±t…….·ơb

Для регрессии из n наблюдений и m независимых переменных существует такая связь между R² и F..=( R²/(1- R²)]

Доверительная вероятность – это вероятность того, что истинное значение результативного показателя попадёт в расчётный прогнозный интервал.

Допустим что для описания одного экономического процесса пригодны 2 модели. Обе адекватны по f критерию фишера. какой предоставить преимущество, у той у кот.: большее значения F критерия

Допустим, что зависимость расходов от дохода описывается функцией y=a+bx среднее значение у=2…равняется 9

Если Rxy положителен, то с ростом x увеличивается y.

Если в уравнении регрессии имеется несущественная переменная, то она обнаруживает себя по низкому значению T статистки

Если качественный фактор имеет 3 градации, то необходимое число фиктивных переменных 2

Если коэффициент корреляции положителен, то в линейной модели с ростом х увеличивается у

Если мы заинтересованы в использовании атрибутивных переменных для отображения эффекта разных месяцев мы должны использовать 11 атрибутивных методов

Если регрессионная модель имеет показательную зависимость, то метод МНК применим после приведения к линейному виду.

Зависимость между коэффициентом множественной детерминации (D) и корреляции (R) описывается следующим методом R=√D

Значимость уравнения регрессии — действительное наличие исследуемой зависимости, а не просто случайное совпадение факторов, имитирующее зависимость, которая фактически не существует.

Значимость уравнения регрессии в целом оценивают: -F-критерий Фишера

Значимость частных и парных коэф. корреляции поверен. с помощью: -t-критерия Стьюдента

Интеркорреляция и связанная с ней мультиколлинеарность — это приближающаяся к полной линейной зависимости тесная связь между факторами.

Какая статистическая характеристика выражается формулой R²=…коэффициент детерминации

Какая статистическая хар-ка выражена формулой: rxy=Ca(x;y) разделить на корень Var(x)*Var(y): коэффициент. корреляции

Какая функция используется при моделировании моделей с постоянным ростом степенная

Какие точки исключаются из временного ряда процедурой сглаживания и в начале, и в конце.

Какое из уравнений регрессии является степенным y=a˳aͯ¹a

Классический метод к оцениванию параметров регрессии основан на: – метод наименьших квадратов (МНК)

Количество степеней свободы для t статистики при проверки значимости параметров регрессии из 35 наблюдений и 3 независимых переменных 31;

Количество степеней свободы знаменателя F-статистики в регрессии из 50 наблюдений и 4 независимых переменных: 45

Компоненты вектора Ei имеют нормальный закон

Корреляция — стохастическая зависимость, являющаяся обобщением строго детерминированной функциональной зависимости посредством включения вероятностной (случайной) компоненты.

Коэффициент автокорреляции: характеризует тесноту линейной связи текущего и предстоящего уровней ряда

Коэффициент детерминации — показатель тесноты стохастической связи в общем случае нелинейной регрессии

Коэффициент детерминации – это величина, которая характеризует связь между зависимыми и независимыми переменными.

Коэффициент детерминации – это квадрат множественного коэффициента корреляции

Коэффициент детерминации – это: величина, которая характеризует связь между независимой и зависимой (зависящей) переменными;

Коэффициент детерминации R показывает долю вариаций зависимой переменной y, объяснимую влиянием факторов, включаемых в модель.

Коэффициент детерминации изменяется в пределах: – от 0 до 1

Коэффициент доверия — это коэффициент, который связывает линейной зависимостью предельную и среднюю ошибки, выясняет смысл предельной ошибки, характеризующей точность оценки, и является аргументом распределения (чаще всего, интеграла вероятностей). Именно эта вероятность и есть степень надежности оценки.

Коэффициент доверия (нормированное отклонение) — результат деления отклонения от среднего на стандартное отклонение, содержательно характеризует степень надежности (уверенности) полученной оценки.

Коэффициент корелляции Rxy используется для определения полноты связи X и Y.

Коэффициент корелляции меняется в пределах : от -1 до 1

Коэффициент корелляции равный 0 означает, что: –отсутствует линейная связь.

Коэффициент корелляции равный 1 означает, что: -существует функциональная зависимость.

Коэффициент корреляции используется для: определения тесноты связи между случайными величинами X и Y;

Коэффициент корреляции рассчитывается для измерения степени линейной взаимосвязи между двумя случайными переменными.

Коэффициент линейной корреляции — показатель тесноты стохастической связи между фактором и результатом в случае линейной регрессии.

Коэффициент регрессии — коэффициент при факторной переменной в модели линейной регрессии.

Коэффициент регрессии b показывает: на сколько единиц увеличивается y, если x увеличивается на 1.

Коэффициент регрессии изменяется в пределах: применяется любое значение ; от 0 до 1; от -1 до 1;

Коэффициент эластичности измеряется в: неизмеримая величина.

Критерий Дарвина-Чотсона применяется для: – отбора факторов в модель; или – определения автокорреляции в остатках

Критерий Стьюдента — проверка значимости отдельных коэффициентов регрессии и значимости коэффициента корреляции.

Критерий Фишера показывает статистическую значимость модели в целом на основе совокупной достоверности всех ее коэффициентов;

Лаговые переменные : – это переменные, относящиеся к предыдущим моментам времени; или -это значения зависим. перемен. за предшествующий период времени.

Лаговые переменные это значение зависимых переменных за предшествующий период времени

Модель в целом статистически значима, если Fрасч > Fтабл.

Модель идентифицирована, если: – число параметров структурной модели равно числу параметров приведён. формы модели.

Модель неидентифицирована, если: – число приведён. коэф. больше числа структурных коэф.

Модель сверхидентифицирована, если: число приведён. коэф. меньше числа структурных коэф

Мультиколлениарность возникает, когда: ошибочное включение в уравнение 2х или более линейно зависимых переменных; 2. две или более объясняющие переменные, в нормальной ситуации слабо коррелированные, становятся в конкретных условиях выборки сильно коррелированными; . в модель включается переменная, сильно коррелирующая с зависимой переменной.

Мультипликативная модель временного ряда имеет вид: – Y=T*S*E

Мультипликативная модель временного ряда строится, если: амплитуда сезонных колебаний возрастает или уменьшается

На основе поквартальных данных…значения 7-1 квартал, 9-2квартал и 11-3квартал …-5

Неправильный выбор функциональной формы или объясняющих переменных называется ошибками спецификации

Несмещённость оценки параметра регрессии, полученной по МНК, означает: – что она характеризуется наименьшей дисперсией.

Одной из проблем которая может возникнуть в многофакторной регрессии и никогда не бывает в парной регрессии, является корреляция между независимыми переменными

От чего зависит количество точек, исключаемых из временного ряда в результате сглаживания: от применяемого метода сглаживания.

Отметьте основные виды ошибок спецификации: отбрасывание значимой переменной; добавление незначимой переменной;

Оценки коэффициентов парной регрессии является несмещённым, если: математические ожидания остатков =0.

Оценки параметров парной линейной регрессии находятся по формуле b= Cov(x;y)/Var(x);a=y¯ ­bx¯

Оценки параметров регрессии являются несмещенными, если Математическое ожидание остатков равно 0

Оценки параметров регрессии являются состоятельными, если: -увеличивается точность оценки при n, т. е. при увеличении n вероятность оценки от истинного значения параметра стремится к 0.

Оценки парной регрессии явл. эффективными, если: оценка обладают наименьшей дисперсией по сравнению с другими оценками

При наличии гетероскедастичности следует применять: – обобщённый МНК

При проверке значимости одновременно всех параметров используется: -F-тест.

При проверке значимости одновременно всех параметров регрессии используется: F-тест.

Применим ли метод наименьших квадратов для расчетов параметров показательной зависимости применим после ее приведения

Применим ли метод наименьших квадратов(МНК) для расчёта параметров нелинейных моделей? применим после её специального приведения к линейному виду

С помощью какого критерия оценивается значимость коэффициента регрессии T стьюдента

С увеличением числа объясняющих переменных скоррестированный коэффициент детерминации: – увеличивается.

Связь между индексом множественной детерминации R² и скорректированным индексом множественной детерминации Ȓ² есть

Скорректиров. коэф. детерминации: – больше обычного коэф. детерминации

Стандартизованный коэффициент уравнения регрессии Ƀk показывает на сколько % изменится результирующий показатель у при изменении хi на 1%при неизмененном среднем уровне других факторов

Стандартный коэффициент уравнения регрессии: показывает на сколько 1 изменится y при изменении фактора xk на 1 при сохранении др.

Суть коэф. детерминации r2xy состоит в следующем: – характеризует долю дисперсии результативного признака y объясняем. регресс., в общей дисперсии результативного признака.

Табличное значение критерия Стьюдента зависит от уровня доверительной вероятности и от числа включённых факторов и от длины исходного ряда.(от принятого уровня значимости и от числа степеней свободы ( n – m -1))

Табличные значения Фишера (F) зависят от доверительной вероятности и от числа включённых факторов и от длины исходного ряда (от доверительной вероятности p и числа степеней свободы дисперсий f1 и f2)..

Уравнение в котором H число эндогенных переменных, D число отсутствующих экзогенных переменных, идентифицируемо если D+1=H

Уравнение в котором H число эндогенных переменных, D число отсутствующих экзогенных переменных, НЕидентифицируемо если D+1<H

Уравнение в котором H число эндогенных переменных, D число отсутствующих экзогенных переменных, сверхидентифицируемо если D+1>H

Уравнение идентифицировано, если: – D+1=H

Уравнение неидентифицировано, если: – D+1<H

Уравнение сверхидентифицировано, если: – D+1>H

Фиктивные переменные – это: атрибутивные признаки (например, как профессия, пол, образование), которым придали цифровые метки;

Формула t= rxy….используется для проверки существенности коэффициента корреляции

Частный F-критерий: – оценивает значимость уравнения регрессии в целом

Число степеней свободы для факторной суммы квадратов в линейной модели множественной регрессии равно: m;

Что показывает коэффициент наклона – на сколько единиц изменится у, если х изменился на единицу,

Что показывает коэффициент. абсолютного роста на сколько единиц изменится у, если х изменился на единицу

Экзогенная переменная – это независимая переменная или фактор-Х.

Экзогенные переменные — это переменные, которые определяются вне системы и являются независимыми

Экзогенные переменные – это предопределенные переменные, влияющие на зависимые переменные (Эндогенные переменные), но не зависящие от них, обозначаются через х

Эластичность измеряется единица измерения фактора…показателя

Эластичность показывает на сколько % изменится редуктивный показатель y при изменении на 1% фактора xk.

Эндогенные переменные – это: зависимые переменные, число которых равно числу уравнений в системе и которые обозначаются через у

Определения

T-отношение (t-критерий) — отношение оценки коэффициента, полученной с помощью МНК, к величине стандартной ошибки оцениваемой величины.

Аддитивная модель временного ряда – это модель, в которой временной ряд представлен как сумма перечисленных компонент.

Критерий Фишера — способ статистической проверки значимости уравнения регрессии, при котором расчетное (фактическое) значение F-отношения сравнивается с его критическим (теоретическим) значением.

Линейная регрессия — это связь (регрессия), которая представлена уравнением прямой линии и выражает простейшую линейную зависимость.

Метод инструментальных переменных — это разновидность МНК. Используется для оценки параметров моделей, описываемых несколькими уравнениями. Главное свойство — частичная замена непригодной объясняющей переменной на такую переменную, которая некоррелированна со случайным членом. Эта замещающая переменная называется инструментальной и приводит к получению состоятельных оценок параметров.

Метод наименьших квадратов (МНК) — способ приближенного нахождения (оценивания) неизвестных коэффициентов (параметров) регрессии. Этот метод основан на требовании минимизации суммы квадратов отклонений значений результата, рассчитанных по уравнению регрессии, и истинных (наблюденных) значений результата.

Множественная линейная регрессия — это множественная регрессия, представляющая линейную связь по каждому фактору.

Множественная регрессия — регрессия с двумя и более факторными переменными.

Модель идентифицируемая — модель, в которой все структурные коэффициенты однозначно определяются по коэффициентам приведенной формы модели.

Модель рекурсивных уравнений — модель, которая содержит зависимые переменные (результативные) одних уравнений в роли фактора, оказываясь в правой части других уравнений.

Мультипликативная модель – модель, в которой временной ряд представлен как произведение перечисленных компонент.

Несмещенная оценка — оценка, среднее которой равно самой оцениваемой величине.

Нулевая гипотеза — предположение о том, что результат не зависит от фактора (коэффициент регрессии равен нулю).

Обобщенный метод наименьших квадратов (ОМНК) — метод, который не требует постоянства дисперсии (гомоскедастичности) остатков, но предполагает пропорциональность остатков общему множителю (дисперсии). Таким образом, это взвешенный МНК.

Объясненная дисперсия — показатель вариации результата, обусловленной регрессией.

Объясняемая (результативная) переменная — переменная, которая статистически зависит от факторной переменной, или объясняющей (регрессора).

Остаточная дисперсия — необъясненная дисперсия, которая показывает вариацию результата под влиянием всех прочих факторов, неучтенных регрессией.

Предопределенные переменные — это экзогенные переменные системы и лаговые эндогенные переменные системы.

Приведенная форма системы — форма, которая, в отличие от структурной, уже содержит одни только линейно зависящие от экзогенных переменных эндогенные переменные. Внешне ничем не отличается от системы независимых уравнений.

Расчетное значение F-отношения — значение, которое получают делением объясненной дисперсии на 1 степень свободы на остаточную дисперсию на 1 степень свободы.

Регрессия (зависимость) — это усредненная (сглаженная), т.е. свободная от случайных мелкомасштабных колебаний (флуктуаций), квазидетерминированная связь между объясняемой переменной (переменными) и объясняющей переменной (переменными). Эта связь выражается формулами, которые характеризуют функциональную зависимость и не содержат явно стохастических (случайных) переменных, которые свое влияние теперь оказывают как результирующее воздействие, принимающее вид чисто функциональной зависимости.

Регрессор (объясняющая переменная, факторная переменная) — это независимая переменная, статистически связанная с результирующей переменной. Характер этой связи и влияние изменения (вариации) регрессора на результат исследуются в эконометрике.

Система взаимосвязанных уравнений — это система одновременных или взаимозависимых уравнений. В ней одни и те же переменные выступают одновременно как зависимые в одних уравнениях и в то же время независимые в других. Это структурная форма системы уравнений. К ней неприменим МНК.

Система внешне не связанных между собой уравнений — система, которая характеризуется наличием одних только корреляций между остатками (ошибками) в разных уравнениях системы.

Случайный остаток (отклонение) — это чисто случайный процесс в виде мелкомасштабных колебаний, не содержащий уже детерминированной компоненты, которая имеется в регрессии.

Состоятельные оценки — оценки, которые позволяют эффективно применять доверительные интервалы, когда вероятность получения оценки на заданном расстоянии от истинного значения параметра становится близка к 1, а точность самих оценок увеличивается с ростом объема выборки.

Спецификация модели — определение существенных факторов и выявление мультиколлинеарности.

Стандартная ошибка — среднеквадратичное (стандартное) отклонение. Оно связано со средней ошибкой и коэффициентом доверия.

Степени свободы — это величины, характеризующие число независимых параметров и необходимые для нахождения по таблицам распределений их критических значений.

Тренд — основная тенденция развития, плавная устойчивая закономерность изменения уровней ряда.

Уровень значимости — величина, показывающая, какова вероятность ошибочного вывода при проверке статистической гипотезы по статистическому критерию.

Фиктивные переменные — это переменные, которые отражают сезонные компоненты ряда для какого-либо одного периода.

Эконометрическая модель — это уравнение или система уравнений, особым образом представляющие зависимость (зависимости) между результатом и факторами. В основе эконометрической модели лежит разбиение сложной и малопонятной зависимости между результатом и факторами на сумму двух следующих компонентов: регрессию (регрессионная компонента) и случайный (флуктуационный) остаток. Другой класс эконометрических моделей образует временные ряды.

Эффективность оценки — это свойство оценки обладать наименьшей дисперсией из всех возможных.

Статистическая информация для применения однофакторного дисперсионного анализа

Ho в случае однофакторного дисперсионного анализа (ANOVA) подразумевает, что средние генеральных совокупностей из которых были извлечены выборки равны, другими словами все они относятся к одной генеральной совокупности и различия носят случайный характер. Для проверки теорий в случае дисперсионного анализа используется F-распределение. F-статистика принимает только положительные или нулевые значения.

Процедура дисперсионного анализа состоит в определении соотношения систематической (межгрупповой) дисперсии к случайной (внутригрупповой) дисперсии в измеряемых данных. В качестве показателя изменчивости используется сумма квадратов отклонения значений параметра от среднего: SS (от англ. Sum of Squares). Общая сумма квадратов SSTotal раскладывается на межгрупповую сумму квадратов SSBG и внутригрупповую сумму квадратов SSWG:

SSTotal = SSBG + SSWG

В случае если верна Ho, то как внутригрупповая, так и межгрупповая дисперсии служат оценками одной и той же дисперсии и должны быть приблизительно равны.

Исходя из этого значение F должно быть близко к 1 в случае, если статистически значимых различий все-таки нет. Критическое значение F определяется уровнем значимости (обычно 0,05 или 0,01) и внутригрупповым и межгрупповым числом степеней свободы (ν). Оно достаточно сложно для вычисления, поэтому чаще используются табличные значения с указанием α, νBG, νWG.

Межгрупповое число степеней свободы:

νBG = m – 1.

m – число групп

Внутригрупповое число степеней свободы:

νWG = n – m

n – количество наблюдений в каждой из групп

Апостериорные значения

Однако, при обнаружении статистически значимых отличий мы не сможем сказать лишь об их наличии, но какие именно группы отличаются друг от друга мы определить не сможем, для этого производят так называемые процедуры апостериорных сравнений. Апостериорные сравнения представляют собой попарные сравнения изучаемых групп для обнаружения различий между ними.

Апостериорные сравнения могут быть проведены с помощью критерия Стьюдента для независимых выборок, что может показаться странным, учитывая сказанное ранее о проблеме множественных сравнений. Однако в отличие от простых попарных сравнений при проведении апостериорных сравнений рассчитываются новые критические уровни значимости для удержания ошибки 1 типа в пределах 5 %.

Наиболее простым и наиболее популярным способом коррекции ошибки 1 типа является поправка Бонферрони (Bonferroni), при которой уровень ошибки 1 типа делится на количество сравнений для получения нового критического уровня значимости. Так, если имеется 3 сравнения, то новый критический уровень должен быть 0,05 / 3 = 0,017. Поправка Бонферрони хорошо контролирует ошибку 1 типа, но является очень консервативной и приводит к повышению вероятности ошибки 2 типа (вероятности принятия решения об отсутствии различий там, где они на самом деле есть). Либеральные критерии, (например критерий Тьюки) в свою очередь, завышают вероятность ошибки 1 типа, то есть вероятность принятия решения о наличии различий там, где их нет.

Таким образом, при выборе статистического критерия для апостериорных сравнений необходимо принимать во внимание, как критерии контролируют ошибки 1 и 2 типов и как они работают при несоблюдении необходимых условий применения дисперсионного анализа.

Если данные не подчиняются нормальному распределению, то при анализе можно использовать два способа: применением различных арифметических преобразований до достижения нормальности распределения и дальше уже применять дисперсионный анализ, или использовать критерий Краскела-Уоллиса (Kruskal-Wallis H-test), иногда его также называют непараметрическим дисперсионным анализом. Как и в большинстве непараметрических методов, работающих с количественными данными, исходный набор данных преобразуется в ранги и обрабатывается уже он. При обнаружении статистически значимых различий между группами стоит дальше проводить апостериорные сравнения с использованием критерия Манна-Уитни.

Пример

В условиях крупной городской клинической больницы было решено провести исследование по оценке влияния возраста на длительность госпитализации после лапароскопической холецистектомии. 9 пациентов были разделены на 3 группы в зависимости от возраста

Длительность госпитализации

после лапароскопической холецистектомии в зависимости от возраста, дни

Группа №1Младше 45 лет Группа №245-55 лет Группа №3Старше 55 лет
3 5 7
1 3 6
2 4 5
x̄=2 x̄=4 x̄=6

Сделайте выводы о влиянии возраста на длительности госпитализации после лапароскопической холецистектомии.

  1. Постановка нулевой гипотезы

H0 указывает на отсутствие различий между группами, иными словами все группы по возрасту относятся к одной генеральной совокупности и соответственно средние равны друг другу

µ1= µ2= µ3

Альтернативная гипотеза выдвигает предположение, что длительно госпитализации зависит от возраста и средние в этих группах на самом деле не равны

µ1≠ µ2≠ µ3

  1. Найдем общую сумму квадратов

Для этого нам нужно знать общую среднюю по всем выборкам, найдем ее:

x̄= (2+3+6)=4

SST =2 = (3-4)2+(1-4) 2+(2-4) 2+(5-4) 2+(4-4) 2+(3-4) 2+(7-4) 2+

+(6-4) 2+(5-4) 2=30

  1. Найдем сумму квадратов внутри групп последовательно вычитая из каждого значения в группе групповую среднюю:

SSWG = (3-2)2 + (1-2) 2 + (2-2) 2 + (5-4) 2 + (3-4) 2 + (4-4) 2 + (7-6) 2 + (6-6) 2 + (5-6)2 =2+2+2=6

  1. Найдем внутригрупповую сумму квадратов.

Для этого нам необходимо найти квадрат отклонения каждой из выборочных средних относительно общей вредней:

SSBG =3(2-4)2+3(4-4)2+3(6-4)2=24

  1. Найдем значение критерия Фишера, исходя из средних квадратов отклонений внутри групп и между ними и соответствующих степеней свободы:

νBG = m – 1 = 3-1 = 2

νWG = n – m = 9 – 3 = 6

F= 12, Fкрит. = 5,143 при α = 0,05

F > Fкрит

  1. Делаем вывод о наличии статистически значимых отличий между группами:

так как наше значение F больше критического значения при заданном количестве наблюдений и количестве групп, иными словами наша дисперсия между группами вносит больший вклад в любую сумму дисперсий, чем таковая внутри самих групп.