Класс точности 2.5

Нужно ли поверять новые электрические счетчики?

Проверять устройства для контроля энергии, только купленные в магазине, необязательно. Дополнительная поверка перед монтажом и вводом в эксплуатацию не требуется. Это связано с тем, что после изготовления оборудование проходит все необходимые этапы диагностики. Соответствующая информация указывается в техническом паспорте к прибору учета. Но в этом нюансе есть одно исключение.

Если устройство длительное время было на складе, то перед непосредственной эксплуатацией его рекомендуется поверить. Для трехфазного оборудования продолжительность нахождения на складе составит не более одного года с момента производства. В случае с однофазными устройствами этот показатель составляет два года. Если временной период больше, то срок хранения энергомера считается истекшим, соответственно, требуется поверка оборудования.

Дело в том, что на качество функционирования узлов и механизмов счетчиков влияют условия хранения оборудования. На практике они зачастую нарушаются, соответственно, изготовитель прибора учета уже не несет ответственности за точность показаний счетчика. Как правило, торговые компании, которые занимаются реализацией энергомеров, учитывают эту особенность. Поэтому покупка оборудования обычно осуществляется небольшими партиями, чтобы срок хранения изделий не превысил норму.

Подробнее о необходимости тестирования прибора учета рассказал канал TyumenTime.

Виды поверок

Существует несколько разновидностей диагностики электрооборудования. Каждый тип поверки проводится в определенное время и при конкретных условиях.

Первичная

Она осуществляется при производстве прибора учета на предприятии. Выполнение данной поверки может производиться при ввозе изделия в страну, если оно было изготовлено за рубежом. Основное предназначение заключается в определении работоспособности устройства в целом. При диагностике специалист сравнивает допустимый диапазон погрешности с фактическим, эта информация вместе с датой указывается в техническом паспорте.

Периодическая

Такая поверка производится через определенное количество лет функционирования либо хранения оборудования. Ее выполняют представители соответствующей организации метрологического центра. Цель данной поверки заключается в определении величины износа энергомера, а также возможности выдачи информации с конкретной степенью погрешности.

Внеочередная

Выполняется до того, как должна произвестись периодическая диагностика по различным причинам:

  • в результате необходимости замены оборудования;
  • при проведении ремонта устройства;
  • из-за потери технической документации к энергомеру;
  • в результате появления погрешностей при считывании показаний, если у домовладельца есть сомнения насчет этого.

О нюансах проведения поверок приборов учета рассказал канал UTVNeft.

Межповерочный интервал механических и электронных счетчиков

В зависимости от типа оборудования временной промежуток для диагностики энергомеров будет отличаться. Важно соблюдать межповерочный интервал электросчетчика и учитывать не только разновидность, но и тип устройства — механический либо электронный.

Однофазные счетчики

Таблица периодичности поверок индукционных приборов составлена с учетом технических параметров.

Тип оборудования Величина номинального тока Число оборотов на 1 киловатт в час Количество цифр на счетном механизме Класс точности Межповерочный интервал Примечание к устройству
СО-1 5 2500 3 2,5 8 Уже не производится
СО-1 10 1250 4 2,5 8
СО-1 10–40 600 4 2,5 16 Изготавливается с 1995 года
СО-193 10–40 600 5 2,5 16
СО-2 10 600 5 2,5 16 ВЗЭТ
СО-2 10 650 4 2,5 16
СО-2 10 750 4 2,5 16
СО-2 10 625 4 2,5 16
СО-2 5 1250 4 2,5 16
СО-2(60) 10 750 4 2,5 16 МЗЭП
СО-2(60) 5 1250 4 2,5 16
СО-2М 10 640 4 2,5 16 ВЗЭТ
СО-2М 5 1280 4 2,5 16
СО-2М2 10–30 640 4 2,5 16
СО-2М2 5–15 1280 4 2,5 16
СО-2МТ 10–30 640 4 2,5 16
СО-2МТ3 10–30 640 4 2,5 16
СО-5 5–15 1250 4 2,5 16
СО-505 10–40 600 5 2 16
СО-50 10–40 625 4 2,5 16
СО-5У 10–30 625 4 2,5 16
СО-И445 10–40 440 5 2 16
СО-И446 10–34 600 5 2,5 16
СО-И446 5–17 1200 4 2,5 16
СО-И446 5–20 1200 4 2,5 16
СО-И446М 10–40 600 5 2,5 16
СО-И449 10–40 210 5 2 16
СО-И449М 10–60 200 5 2 16
СО-И449М1-1 10–40 400 5 2 16
СО-И449Т 10–40 210 5 2 16
СО-И449МТ 10–60 200 5 2 16
СО-ЭЭ6705 10–40 450 4 2 16 ЛЭМЗ
СО-ЭЭ6705 10–40 400 5 2 16

Для остальных типов однофазных индукционных приборов интервал поверки составит 16 лет независимо от класса точности и количества цифр на счетном механизме.

Немного другая периодичность диагностики у электронного оборудования.

Тип устройства Параметр номинального тока Количество оборотов
на 1 кВт/ч
Число цифр на считывающем механизме Класс точности Межповерочная периодичность Примечание
ЦЭ6807А-1 5–50 500 5 2 6 МЭТЗ
ЦЭ6807А-2 5–50 500 5 2 6 МЭТЗ
Двухтарифное оборудование СЭО-1 10–50 57600 5 2 6
СО-Ф663 5–50 100 5 2 5 Не производится
СОЭБ-1 10–50 720 5 2 6 БЭМЗ
А100D1B 10 (60) 1000 ЖКИ 1 16 СП «АББВЭИ»

Трехфазные счетчики

Таблица периодичности поверки индукционного типа энергомеров в соответствии с техническими параметрами.

Тип оборудования Величина номинального тока Число оборотов на один киловатт в час Количество цифр на считывающем устройстве Класс точности Межповерочная периодичность Примечание
СА4У-И672М 3×5 450 4 (5) 2 4 ЛЭМЗ
СА4-И672М 3×10 225 4 2 8 ЛЭМЗ 1, 2, 3
СА4-И678 3×20–50 100 5 2 8 1, 2, 3
САЗУ-М670М 3×5 450 4 2 4 Уже не производится
СА4У-Т4 3×5 750 4 2 4
СР4У-И673М 3×5 450 4 2 4 ЛЭМЗ
СА4-И6П 3×10-60 100 5 2 8
Т31-F 3×10 (60) 75 6 2 8
HN4-СА4 3×25–50 120 5 3 8
ДН-4 3х5–25 300 5 2 8 Выпускается в Венгрии
А1Т-4-0000Т 5×24 4 2 8
А4-3 3×10–40 120 5 2 8 Производится в Болгарии
ЕТ414 10–40 5 2 8
ДН-4 15 100 6 2 8 Выпускается в Венгрии
САЧ-И60 3×10–60 100 5 2 8
САЧУ-196 3×5 5 2 Производится на Украине

В моделях счетчиков, которые не были указаны в таблице, периодичность между диагностикой — 4 года.

Для всех электронных трехфазных приборов учета межповерочный интервал составляет шесть лет.

Канал «Типичная Анжерка» подробно рассказал о сроках годности счетчиков, а также о межповерочном интервале.

Методика поверки счетчиков электроэнергии

Если придется снимать прибор, то схема действий выглядит так:

  1. Человек получает разрешение на демонтаж устройства. Производится снятие энергомера. После этого прибор доставляется в ЦСМ.
  2. Там специалисты выполняют поверку. Когда процедура будет завершена, составляется акт, который отдается в абонентскую службу компании, занимающейся поставкой электроснабжения.
  3. Организация подтверждает допуск к использованию оборудования. Затем устройство заводится в расчетную схему. Если энергомер не соответствует требованиям, то оборудование меняется на новое.

Процедура выполнения диагностики состоит из следующих этапов:

  1. Производится визуальная проверка оборудования. Специалист должен проверить прибор учета на предмет деформации, а также наличие дефектов на корпусе.
  2. Затем выполняется диагностика прочности электрической изоляции посредством подачи постоянного и переменного напряжения.
  3. Производится контроль правильности функционирования счетного механизма в аппарате учета. Для выполнения задачи оборудование необходимо подключить на 15 минут к источнику питания, чтобы прибор прогрелся.
  4. Затем надо удостовериться в отсутствии самохода. Если его нет, то диагностике оборудование не подвергается.
  5. Выполняется проверка порога чувствительности электросчетчика.

Подробно о проведении диагностики работоспособности приборов учета рассказал канал «Солигорск. Солигорский телеканал. СТК».

Как и какие делаются отметки?

Метки о проведении этой задачи оставляют в технической документации к оборудованию, они также могут вписываться в свидетельство о поверке. Здесь же указывается дата, степень погрешности, которая была выявлена при диагностике. Если в работе энергомера имеются неполадки или нарушения, информация об этом также вносится в документ. В случае когда устройство не проходит поверку, потребителю выдается надлежащее извещение, где указывается, каким нормам оборудование не соответствует.

Можно ли не снимать электросчетчик?

В этом вопросе все зависит от конкретной организации, занимающейся диагностикой, а также от типа проблемы. Большинство компаний предлагает потребителям услугу поверки прибора учета на дому. Специалист приезжает к хозяину квартиры или частного домовладения и делает эту процедуру на месте. Этот вариант более целесообразный, поскольку позволяет определить ошибки при подключении или неправильное использование оборудования. Но если проблема заключается в поломке устройства, то его в любом случае придется демонтировать. Определить причину неисправности можно только с использованием специального оборудования, которое имеется в мастерских.

Стоимость услуги

Цена поверки зависит от типа устройства, а также срочности проведения процедуры.

Наименование Цена, руб
Диагностика индукционных однофазных счетчиков От 650
Поверка такого же оборудования, только электронного типа От 720
Трехфазные механические приборы учета От 750
Для аналогичного вида электросчетчиков электронного типа От 820
Цены актуальны для трех регионов: Москва, Челябинск, Краснодар.

Отдельно следует сказать о сроках:

  • если процедуру поверки ускорить в среднем до пяти рабочих дней, то стоимость возрастет на 25%;
  • для проведения диагностики в течение трех дней цена услуги увеличится на 50%;
  • если нужно срочно выполнить поверку за один день, то к стоимости процедуры придется добавить 100%.

Канал «СпецЭнергоРемонт» подробно рассказал о выполнении поверки электрических приборов, а также модернизации сети.

Кто платит?

Весь процесс учета и контроля работы электросчета оплачивает владелец оборудования. При необходимости потребитель должен самостоятельно доставить его в центр стандартизации. Но предварительно следует оговорить дату поверки с представителями организации. О необходимости выполнения этой задачи должен заблаговременно сообщить Энергосбыт.

Самостоятельная проверка исправности электросчетчика до окончания срока поверки

При диагностике своими руками необходимо сравнить фактическую величину потребления электричества с нормированной, которая указана в показаниях:

  1. Производится отключение всего электрооборудования от прибора учета, которое соединяется посредством линейных автоматов.
  2. Для выполнения диагностики надо визуально осмотреть устройство и убедиться, вращается ли диск внутри. Если прибор электронный, то следует удостовериться, мерцает диодный индикатор или нет.
  3. Самоход устройства отсутствует, если за 15 минут диск совершит не более одного оборота. В случае с электронным прибором число световых импульсов должно составить не больше единичного показания.

Есть еще один вариант проверки, но для выполнения этой задачи надо оценить функциональность исполнительного устройства с активированной нагрузкой на электроцепь. Для этого потребуется три лампы накаливания, каждая из которых должна быть рассчитана на 100 ватт. Понадобится секундомер либо хронометр, который сможет определить периодичность оборотов.

Принцип поверки состоит в следующем:

  1. С подключенной нагрузкой в электроцепь, которая соответствует 300 ваттам, надо засечь время, на протяжении которого диск сделает пять оборотов. Если прибор учета электронный, то лампочка должна моргнуть 5 раз.
  2. Затем выполняется оценка погрешности измерения или точности устройства в соответствии с формулой Е = (Р * Т * А / 3600 – 1) * 100%. Т в данном случае — время, в течение которого диск сделает один оборот. А — передаточное число оборудования, которое определяется в соответствии с технической документацией.

Фотогалерея

Для проведения самостоятельной поверки следует знать, где расположены счетчики. Возможные места установки электросчетчиков приведены на фото.

Расположение прибора учета внутри помещенияЧетыре энергомера в щитке подъезда жилого домаУстановка оборудования на уличном столбе

Какие нюансы нужно учитывать?

При использовании оборудования необходимо учитывать, что:

  1. У владельца жилья всегда должен быть технический паспорт на прибор учета. В документации имеется печать сертифицированной инстанции, а также дата, когда оборудование было введено в эксплуатацию.
  2. Все сроки диагностики необходимо сверять с теми, которые указаны в паспорте.
  3. После выполнения поверки надо уточнить дату следующей. Потребителю нужно знать и о межповерочных интервалах для конкретного оборудования.
  4. Пломба, которая была установлена на устройство, должна быть самостоятельно продиагностирована. Важно, чтобы она соответствовала организации, которая ее ставила.
  5. Если прибор учета расположен на улице либо на лестничной площадке, то он будет обслуживаться энергетиками без участия потребителя. Домовладелец должен только вовремя платить за электричество.

>Видео «Диагностика работы устройства учета»

Канал ЗАО «Росприбор» показал, как выполняется процедура поверки с помощью специального приспособления МТ786.

>1 Общие сведения о проборах учёта электрической энергии

1.1 Термины и определения.

Прибор учета электроэнергии – средство измерения, используемое для определения объемов (количества) потребления (производства, передачи) электрической энергии потребителями (гарантирующим поставщиком, сетевыми организациями).

Интегральный прибор учета – прибор учета, обеспечивающий учет электрической энергии суммарно по состоянию на определенный момент времени.

Измерительный комплекс – совокупность приборов учета и измерительных трансформаторов тока и (или) напряжения, соединенных между собой по установленной схеме, через которые такие приборы учета установлены (подключены) (далее — измерительные трансформаторы), предназначенная для измерения объемов электрической энергии (мощности) в одной точке поставки.

Система учета – совокупность измерительных комплексов, связующих и вычислительных компонентов, устройств сбора и передачи данных, программных средств, предназначенная для измерения, хранения, удаленного сбора и передачи показаний приборов учета по одной и более точек поставки.

Субъекты розничных рынков – участники отношений по производству, передаче, купле-продаже (поставке) и потреблению электрической энергии (мощности) на розничных рынках электрической энергии (далее — розничные рынки), а также по оказанию услуг, которые являются неотъемлемой частью процесса поставки электрической энергии потребителям.

Электрическая сеть — совокупность электроустановок для передачи и распределения электрической энергии, состоящая из подстанций, распределительных устройств, токопроводов, воздушных и кабельных линий электропередачи, работающих на определенной территории.

Приемник электрической энергии (электроприемник) — аппарат, агрегат и др., предназначенный для преобразования электрической энергии в другой вид энергии.

Потребитель электрической энергии — электроприемник или группа электроприемников, объединенных технологическим процессом и размещающихся на определенной территории.

    1. Классификация приборов учёта

Электросчетчики принято классифицировать по типу подключения, типу измеряемых ими величин, а также по типу конструкции.

По типу подключения электрические счетчики бывают:

Прямого включения в силовую цепь, в которой счетчик включается непосредственно к питающей сети.

Трансформаторного включения через специальные измерительные трансформаторы. Большинство электросчетчиков, хорошо известных нам являются приборами прямого включения.

По типу измеряемых величин счетчики разделяются на:

Однофазные электросчетчики, которые учитывают потребление энергии в однофазных сетях напряжением 220 В и частотой 50 Гц.

Трехфазные электросчетчики учитывают потребленную энергию в сетях 380 В, частотой 50 Гц.

Причем все современные трехфазные счетчики способны учитывать электроэнергию и по одной, отдельно взятой фазе.

По типу конструкции счетчики подразделяются на:

Электромеханические или индукционные счетчики, в которых подсчет ведется за счет вращения алюминиевого диска в магнитном поле. Скорость вращения диска пропорциональна потребляемой мощности, а учет количества происходит подсчетом количества оборотов диска при помощи специального механизма.

Например, в распространенном однофазном счетчике СО-И446 — 1 киловатт-час потребленной энергии соответствует 1200 оборотов диска.

Электронные счетчики – представляют собой устройства, которые аналоговый электрический сигнал, снятый с измерительного трансформатора тока, преобразуют в электронные импульсы, частота следования которых пропорциональна потребляемой в данный момент мощности.

Подсчет количества импульсов позволяет судить о количестве потребленной электрической энергии. Электронные счетчики постепенно вытесняют индукционные в силу своих преимуществ.

  1. Требования к местам установки приборов учёта

Приборы учета подлежат установке на границах балансовой принадлежности объектов электроэнергетики (энергопринимающих устройств) смежных субъектов розничного рынка — потребителей, производителей электрической энергии (мощности) на розничных рынках, сетевых организаций, имеющих общую границу балансовой принадлежности (далее — смежные субъекты розничного рынка), а также в иных местах, с соблюдением установленных законодательством Российской Федерации требований к местам установки приборов учета. При отсутствии технической возможности установки прибора учета на границе балансовой принадлежности объектов электроэнергетики (энергопринимающих устройств) смежных субъектов розничного рынка прибор учета подлежит установке в месте, максимально приближенном к границе балансовой принадлежности, в котором имеется техническая возможность его установки. При этом по соглашению между смежными субъектами розничного рынка прибор учета, подлежащий использованию для определения объемов потребления (производства, передачи) электрической энергии одного субъекта, может быть установлен в границах объектов электроэнергетики (энергопринимающих устройств) другого смежного субъекта.

Установка и эксплуатация приборов учета электрической энергии должна осуществляться в соответствии с требованиями правил устройства электроустановок и инструкций заводов-изготовителей. При установке электросчетчиков и электропроводки к ним руководствоваться ПУЭ п.п.1.5.27-1.5.38.

Электросчетчики должны устанавливаться в шкафах, камерах, комплектных распределительных устройствах, на панелях, щитах, в нишах, на стенах, имеющих жесткую конструкцию.

При установке приборов учета вне помещений (на опоре ВЛ, фасаде здания и т.д.) счѐтчик электрической энергии подлежит установке в отдельном запирающемся шкафу наружной установки со степенью защиты от проникновения воды и посторонних предметов соответствующий IP 54 по ГОСТ 14254-96.

Высота от пола до коробки зажимов электросчетчиков должна быть в пределах 0,8 — 1,7 м. Допускается высота менее 0,8 м, но не менее 0,4 м.

Конструкция крепления электросчетчика должна обеспечивать возможность удобной установки, проверки и съема при замене с лицевой стороны шкафа, панели и т.д.

Измерительный комплекс должен быть защищен от несанкционированного доступа для исключения возможности искажения результатов измерений.

Пломбировке подлежат (п. 2.11.18 «Правил технической эксплуатации электроустановок потребителей», утвержденных Приказом Минэнерго РФ от 13 января 2003 г. № 6:

— клеммники трансформаторов тока;

— крышки переходных коробок, где имеются цепи к электросчетчикам;

— токовые цепи расчетных счетчиков в случаях, когда к трансформаторам тока совместно со счетчиками присоединены электроизмерительные приборы и устройства защиты;

— испытательные коробки с зажимами для шунтирования вторичных обмоток трансформаторов тока и места соединения цепей напряжения при отключении расчетных счетчиков для их замены или поверки;

— решетки и дверцы камер, где установлены трансформаторы тока;

— решетки или дверцы камер, где установлены предохранители на стороне высокого и низкого напряжения трансформаторов напряжения, к которым присоединены расчетные счетчики;

— приспособления на рукоятках приводов разъединителей трансформаторов напряжения, к которым присоединены расчетные счетчики.

  1. Требования метрологическим характеристикам приборов учёта

Основным техническим параметром электросчетчика является класс точности.

Для учета электрической энергии, потребляемой гражданами, а также на границе раздела объектов электросетевого хозяйства и внутридомовых инженерных систем многоквартирного дома подлежат использованию приборы учета класса точности 2,0 и выше.

В многоквартирных домах, на границе раздела объектов электросетевого хозяйства и внутридомовых инженерных систем подлежат установке коллективные (общедомовые) приборы учета класса точности 1,0 и выше.

Для учета электрической энергии, потребляемой потребителями, с максимальной мощностью менее 670 кВт, подлежат использованию приборы учета класса точности 1,0 и выше — для точек присоединения к объектам электросетевого хозяйства напряжением 35 кВ и ниже и класса точности 0,5 S и выше — для точек присоединения к объектам электросетевого хозяйства напряжением 110 кВ и выше.

Для учета электрической энергии, потребляемой потребителями с максимальной мощностью не менее 670 кВт, подлежат использованию приборы учета, позволяющие измерять почасовые объемы потребления электрической энергии, класса точности 0,5 S и выше, обеспечивающие хранение данных о почасовых объемах потребления электрической энергии за последние 120 дней и более или включенные в систему учета.

Каждый установленный расчетный счетчик должен иметь на винтах, крепящих кожух счетчика, пломбы с клеймом госповерителя, а на зажимной крышке — пломбу энергоснабжающей организации. На вновь устанавливаемых трехфазных счетчиках должны быть пломбы государственной поверки с давностью не более 12 мес., а на однофазных счетчиках — с давностью не более 2 лет

Важно знать, что нарушение пломбы (марки) на расчетном приборе учета лишает потребителя электроэнергии правовых оснований производить расчеты за потребленную электроэнергию с использованием показаний данного счетчика.

Класс точности измерительных трансформаторов, используемых в измерительных комплексах для установки (подключения) приборов учета, должен быть не ниже 0,5. Допускается использование измерительных трансформаторов напряжения класса точности 1,0 для установки (подключения) приборов учета класса точности 2,0. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40% номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5%.

Периодическая поверка прибора учета, измерительных трансформаторов должна проводиться по истечении межповерочного интервала, установленного для данного типа прибора учета, измерительного трансформатора в соответствии с законодательством Российской Федерации об обеспечении единства измерений.

2.5.1 Классы точности средств измерений

При высокоточных лабораторных измерениях предполагается строгое нормирование метрологических характеристик средства измерений (диапазон измерений, предел измерения, цена деления шкалы, чувствительность и др.). Основная метрологическая характеристика СИ – погрешность СИ – есть разность между показаниями СИ и истинными (действительными) значениями ФВ. Все погрешности СИ в зависимости от внешних условий делятся на основные и дополнительные .

При технических измерениях, когда не предусмотрено выделение случайных и систематических составляющих, когда не существенна динамическая погрешность СИ, когда не учитываются влияющие (дестабилизирующие) факторы и т.д., можно пользоваться более грубым нормированием – присвоением СИ определенного класса точности по ГОСТ 8.401-80.

Класс точности — это обобщенная метрологическая характеристика СИ, определяемая предельными значениями допустимых основной и дополнительной погрешностей в рабочих диапазонах влияющих величин. Например, для основного параметра окружающей среды — температуры — в паспорте на прибор может быть записано: «……диапазон рабочих температур:0….+400С, диапазон температур хранения: -10…+600С». Класс точности СИ уже включает систематическую и случайную погрешности. Однако он не является непосредственной характеристикой точности измерений, выполняемых с помощью этих СИ, поскольку точность измерения зависит как от метода измерения, так и условий измерения. В частности, чтобы измерить величину с точностью до 1%, выбранное СИ должно обладать гораздо меньшей погрешностью. Для гарантированной заданной или расчетной погрешности измерений δиз относительная погрешность СИ δСИ должна быть на 25%-30% ниже чем δи (т.е. δси=0,7 δиз). Определяя класс точности, нормируют, прежде всего пределы допустимой основной погрешности δосн. Пределы допускаемой дополнительной погрешности устанавливают в виде дольного (кратного) значения ( δосн). Пределы допускаемых основной и дополнительной погрешностей выражают в форме абсолютной (), относительной (δ) или приведенной () погрешностей.

Приведенной погрешностью СИ (прибора) называют относительную погрешность, определяемую по формуле:

где — предельно допустимая (максимальная) абсолютная погрешность СИ, а Хн — нормирующее значение (чаще всего в качестве Хн выбирается верхний или конечный предел диапазона измерения прибора Хк).

ГОСТ 8.401-80 «Классы точности средств измерений. Общие требования» в качестве основных устанавливает три вида классов точности СИ:

1) для пределов допускаемой абсолютной основной погрешности в единицах измеряемой величины или делениях шкалы;

2) для пределов допускаемой относительной погрешности в виде ряда чисел

δ=±А 10n,

(1)

где А=1; 1,5; 2; 2,5; 4; 5; n= 1; 0; -1; -2; -3……

3) для пределов допускаемой приведенной погрешности с тем же рядом чисел γ=±А10n. Например для класса точности 0,05 , А=5, n= -2. При этом проценты в обозначении класса точности не указываются;

Абсолютная погрешность может выражаться одним числом =а при аддитивном характере погрешности (ширина коридора значений не изменяется во всем измеряемом диапазоне значении Х, см. рисунок 2а), или двучленом Δ=(а+bх) при совместном проявлении аддитивной и мультипликативной составляющих, либо в виде таблицы (графика функции) при нелинейном изменении границ абсолютной погрешности (например, табл.1).

Таблица 1

Пределы допускаемой абсолютной погрешности вольтметра М-366

Показания СИ, В

Погрешность Δ, В

-0,2

-0,1

0,1

0,2

0,35

0,45

0,55

0,7

Классы точности СИ, выраженные через абсолютные погрешности, обозначают прописными буквами латинского алфавита или римскими цифрами. При этом чем дальше буква от начала алфавита тем больше значения допускаемой абсолютной погрешности. Буквенное обозначение принято для мер с аддитивной погрешностью, цифра ΙΙΙ для мер с обоими составляющими погрешности (см. табл.2).

Класс точности через относительную погрешность СИ назначается двумя способами:

— Если погрешность СИ имеет в основном мультипликативный характер (при этом относительная погрешность остается постоянной величиной g во всем измеряемом диапазоне), то пределы допускаемой основной относительной погрешности устанавливают по формуле

(2)

Так определяют классы точности мостов переменного тока, счетчиков электроэнергии, делителей напряжения, измерительных трансформаторов и др. При этом класс точности на СИ обозначается цифрой в кружке. Например .

— Если СИ имеют обе составляющих погрешности, то класс точности обозначается двумя цифрами c/d , соответствующими значениям с и d формулы

(3)

Здесь c и d выражаются также через ряд (1). Причем c>d, Хк — конечное значение шкалы, X – значение отсчета. Например, класс точности 0,02/0,01 означает, что с=0,02; а d=0,01.

Для некоторых СИ характерна сложная зависимость относительной погрешности от измеряемой величины или влияющих факторов, которая приводит к логарифмической характеристике точности. В основном это широкополосные СИ, например мосты постоянного тока, мосты сопротивлений, цифровые частомеры и т.д. Для них ГОСТ 8.401-80 допускает нормирование класса точности трехчленной формулой

δ(x)=(xmin/x+ δ3+x/xk)

(4)

где Хmin и Хк — порог и предел чувствительности, δз — относительная погрешность, ограничивающая снизу рабочий диапазон. При δз =0,5%, Хmin=0,02 Ом и Хк =20*106 Ом для любого Х относительная погрешность составит:

δx=(0,02/x+0,5/100+x/20∙10^6)100%.

(5)

Для приборов с существенно неравномерной шкалой нормирующее значение устанавливается равным длине шкалы или ее части, соответствующей диапазону измерений. В этом случае предел абсолютной погрешности выражают, как и длину шкалы, в единицах длины, а на шкалу прибора наносится обозначение класса точности в виде цифры под которой находится знак .Например, обозначение класса точности означает, что для данного прибора установлен предел допускаемой погрешности, составляющей 2,5% от длины шкалы, действительное значение измеряемой величины должно находиться в пределах ±2,5% от длины шкалы, отсчитанных от установившегося положения стрелки.

Обозначения классов точности в документах и на приборах приведены в табл. 2.

Таблица 2

Необходимо подчеркнуть, что класс точности является обобщенной характеристикой СИ данного типа. Значение его позволяет не определить погрешность конкретного измерения, а лишь указать пределы, в которых находится погрешность при измерении физической величины данным средством.

Пример. Отсчет по шкале прибора с приделами измерений 0-50А и равномерной шкалой составил 25А.Пренебрегаю другими видами погрешностей измерений, оценить пределы абсолютной погрешности этого отсчета при использовании амперметров с классами точности 0,02/0,01 , , 0,5. Выбрать амперметр, который бы давал погрешность отсчета, не превышающую 0,01А.

1.Для СИ класс точности 0,02/0,01 из табл.2 находим

,

2.Для СИ класс точности

% ,

3.Для СИ класс точности 0,5

,

Вывод. Погрешность отсчета не превышающую 0,01А обеспечит амперметр класса точности 0,02/0,01, а при использовании амперметра класса точности 0,5 погрешность отсчета будет превышать требуемую в 25 раз.

Что такое класс точности электросчетчика?

Современные электрические счётчики помимо простых измерений мощности электроэнергии, способны самостоятельно применять тарифы с учётом основных характеристик окружающей среды. Также такие приборы могут отслеживать качественные характеристики всей подаваемой энергии и делают возможным удаленный доступ к показателям.

По своей сути, класс точности является параметром, определяющим показатели степени погрешности устройства.

Такие показатели в обязательном порядке отображаются на передней панели устанавливаемого прибора учёта и отражают уровень погрешности всех выполняемых устройством замеров.

Правильно выбранный прибор позволяет определить наибольшую возможную относительную погрешность в процентном соотношении.

На сегодняшний день повсеместно осуществляется замена уже полностью устаревших, с технической точки зрения, электрических счетчиков более современными и качественными устройствами. В первую очередь такая массовая замена объясняется недостаточной точностью старых приборов учёта электроэнергии, а также значительно возросшими нагрузками на электрические сети.

В соответствии с указаниями, прописанными в Постановлении РФ, обязательной замене подлежат электрические счётчики, класс точности которых составляет 2,5. Разрешены к применению приборы учёта, имеющие показатели 1 и 2 класса точности.

Какие бывают классы точности?

В соответствии с установленными нормами и правилами, первичную поверку выполняет завод-изготовитель.

Класс точности прописывается в паспорте, который является сопроводительной документацией любого прибора учёта электроэнергии.

Именно с такой заводской отметки и отсчитывается стандартный временной интервал.

Дальнейшие проверки проводятся:

  • для электрических счётчиков – 9-15 лет;
  • для механических однофазных электрических счетчик – 16 лет;
  • для электрических счётчиков с показателями класса точности 0,5 единиц – 5 лет;
  • для трехфазного счетчика – 5-9 лет;
  • для современных электрических счетчиков – 15 лет и более.

Поверка предполагает демонтаж прибора учёта электроэнергии и сдачу его в специальную лабораторию, имеющую аккредитацию для выполнения такого вида работ.

Указание класса точности на приборе учета

По результатам проверки выдаётся документ, который является свидетельством исправности прибора или отражает необходимость в обязательном порядке приобрести новый электросчётчик. В настоящее время есть пять классов точности: 0.2, 0.5, 1.0, 2.0 и 5.0, что является отображением процента погрешности, возможной при подсчёте электрической энергии прибором учёта.

Показатель 5.0 является полностью устаревшим, поэтому в индукционных электросчётчиках применяется класс точности 2.0, а в электронных приборах учёта – класс точности равен единице.

Какой класс точности должен быть у электросчетчика

Правильный выбор электрического счетчика для квартиры или частного домовладения является достаточно сложной задачей и предполагает учёт очень многих факторов, включая также класс точности.

При замене старого электрического счетчика, который устанавливается в квартиру, частный дом или гараж, очень важно ориентироваться не только на показатели мощности, но и класс точности, который обратно пропорционален указываемому производителем цифровому значению. Таким образом, нужно помнить, что чем меньше цифра обозначения на лицевой панели, тем выше уровень класса.

Электронные модели электросчетчиков постепенно вытесняют старые индукционные. Индукционный счетчик электроэнергии, тем не менее, все еще используется, к тому же имеет некоторые преимущества.

Что такое трансформатор тока и как он работает, читайте .

Расчет электроэнергии по однотарифному и многотарифному счетчикам различается. О том, как правильно снять показания, вы узнаете из этой информации.

Для квартиры

От показателей класса точности прибора учёта напрямую будут зависеть все колебания таких параметров, как процентное отклонение от настоящего количества всего потребляемого объёма электрической энергии.

Бытовое применение такого прибора в квартирных условиях предполагает приемлемый средний уровень класса точности в пределах двух процентов.

Например, реальное потребление электроэнергии в 100кВт предполагает наличие показателей на уровне от 98кВт до 102кВт. Чем меньшая цифра, указываемая с сопроводительной технической документации, обозначает класс точности, тем меньше будет погрешность. Следует отметить, что вариант электрических счётчиков с максимальной точностью отображения погрешностей, как правило, выше по стоимости, чем другие модели.

С целью правильного определения основных показателей квартирного счётчика при выборе модели очень важно получить разъяснения у специалистов организации, занимающейся энергетическим снабжением данного жилого помещения. Чаще всего, все нюансы обязательно прописываются в договоре, который заключается при поставке электрической энергии между организацией и потребителем.

Важно помнить, что в соответствии с Российским законодательством, в договорах, заключаемых между потребителями и сбытовой организацией, обозначается только нижний уровень класса точности. В выборе верхних показателей, потребители электроэнергии на законодательном уровне не ограничиваются.

В любых жилых многоквартирных домах в обязательном порядке устанавливаются вводные общедомовые приборы учёта электроэнергии с классом точности единица или выше.

Все общедомовые электрические счетчики с классом 2.0 подлежат замене при выходе из строя или в процессе выполнения очередной плановой поверки.

Для частного дома

Прежде чем приступить к самостоятельному выбору определенной модели прибора учёта расходуемого электричества, требуется уточнить основные технические характеристики устройства, а также выяснить все условия энергоснабжения частного домовладения.

При отсутствии необходимых данных в сопроводительной документации, целесообразно привлечь специалистов, которые помогут уточнить тип напряжения, а также учтут количество подключаемых бытовых приборов и энергозависимой техники.

Желательно заблаговременно позаботится о составлении грамотной схемы электрической проводки в частном доме.

Для бытового потребления используются электросчетчики, обладающие точностью измерений в 2.5% или более. Именно такие пределы установлены для приборов учёта индукционного или электромеханического типа. Для наиболее точных электронных и цифровых моделей характерным является измерение потребляемой электрической энергии с уровнем погрешности – 1.0 или 1.5. Бытовые модели счетчиков, имеющие более высокие показатели класса точности, в настоящее время не производятся.

Для установки в условиях частного дома, безусловно, наилучшим вариантом являются приборы, обладающие классом точности на уровне 2.0% и имеющие функцию подсчёта электроэнергии в зависимости от ночного и дневного режима.

Как определить?

В большинстве квартир и частных домах установлены электрические счётчики с классом точности в 2.5%.

В настоящее время такие устаревшие приборы учёта относятся к категории нерасчётных, поэтому энергоснабжающие организации уполномочены отказывать в приёме показаний расхода электричества для выполнения расчёта.

Нерасчётные электросчётчики подлежат обязательной замене на более новые и современные приборы.

Самостоятельно определить класс точности достаточно просто при помощи обычного визуального осмотра приборной панели устройства.

На циферблате любой модели, в кружочке, есть две цифры, которые разделены запятой.

Одной из важных характеристик прибора учета является коэффициент трансформации счетчика электроэнергии. Рассмотрим данную величину подробно.

Как правильно опломбировать счетчик электроэнергии и кто это должен делать? Ответы на эти вопросы даны .

Определение процента погрешности, а также установка факта превышения стандартных пределов осуществляется посредством технической поверки, в процессе которой обязательно выполняется сравнительный анализ показаний проверяемого электрического счетчика с образцовым прибором учёта.

Такой способ проверки является затратным, поэтому специалисты рекомендуют отдавать предпочтение приобретению новой модели и полной замене устаревшего прибора.